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(3)
where (u,v) € E but is not on the shortest path from u to 1.

B. First Test
However, as a potential counterexample to this interpretation,
it is possible to suggest some version of the scenario described
in Fig. 1{b). Here, there is traffic demand of rate r from router A
to router C', The i 1 splits at router 4 are v, along an inter-
mediate price link with pri and o, along the more ex-
pensive route with price wg + wy, assuming a; = 1 imtially
The relationship between the initial link prices are assumed to be
> Wy > wet+wg,ie,li A, B) is along the shortest path
from A to C', but B also has the most expensive way to reach
', The concern is that router A shifting traffic from the inter-
mediate price link to the link with price w 5 might result in the
cost increasing as router B initially routes traffic only through
the most expensive link (o 1). However, because router £
onjunction with the changes
at router A), the total cost does in fact decrease. More precisely,
the cost derivative can be calculated as follows:
i &

decrea: and incre:

wa

where r g isthe incoming rate to
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HALO: Hop-by-Hop Adaptive Link-State
Optimal Routing
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Abstract—We present HALQ, the first link-state routing solution
packet forwarding that minimizes the cost of car-

through packet-switched networks.

for every other node ¢, the algorithm independen:
i of traffic destined to ¢ that leaves u on each
t each iteration, the updates are caleulated
est path to each destination as determined by
of the network's links. The marginal link costs
est paths are in turn obtained from link-state
updates that are looded through the network after each iteration.
For stationary input traffic, we prove tha ) converges o the
routing assignment that minimizes the cost of the network. Fur-
thermore, we observe that our technique is adaptive, automatically
converging to the new optimal routing assignment for quasi-static
network changes. We also report numerical and experimental eval-
explore additional
ne a proof-ol-concept implemen-

tation of HALQ.

Index Terms—IP networks, load balancing, network manage-
ment, optims

PTIMAL routing

we find that the different optimal routing algorithms devel-
oped over the last 40 are seldc nplemented. Instead,
distributed link-s /1S-1S that

tradomain routing solutions on the Internet

The driving force behind the widespread adoption of
link-state, hop-by-hop algorithms has been their simplicity—the
main idea is to centrally gn weights to links based on input
traffic statistics, flood the link weights through the network,
and then local
paths computed from the link weights. As our communic

5 have grown rapidly and complexit

» implement.
r, the obvious tradeoff has been lost performance.

ptimal link weig|
for OSPF, if they exist, has been shown to be NP-hard [4]. Fur-
thermore, it is possible for even the best weight setting to lead
to routing that deviates significantly from the optimal routing
d nment [4].
r goal in this paper is to eliminate this tradeoff between

nment. To the best of our knowledge, this is the first optimal

r=hop routing solution
Not surprisingly, there are multiple challenges to overcome
when designing such a solution, Before getting into them,
we define the following important recurring terms for ease of
exposition
Hop-by-hop:
only the next hop that a pacl
Adaptive algorithm does not require the traff
demand matrix as an explicit input in order
to compute link weights. Specificall

to changes in the networl
changes and traffic variations, as
from the network states like link flow rates
Link-state: “ach router receives the state of all the
network's links through periodically flooded
tate updates and makes routing decisions
hased on the link states.
Optimal: The routing algorithm minimizes some
T i delay
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Lemma

It analyt ates the intwitive idea that the total price of
sending traffic to meet the demand in the network, as defined
by the sum of the products of the traffic demand rate and the

cost [18].
Lemma 2:

terms of the change in the split ratios at each node, i.e., how each
node affects the network cost. Now we are finally in a po
to prove the main result of the paper, which is summariz
the following theorem
Theorem 1: In a network, at every node u, for every de:

tination ¢, let the evolution of the split ratios be defined by
(6)-(9). Then, starting from any nitial conditions, we have the
following

Convergence: o converges to the largest invariant set in {a

| (f) = 0}

Optimality: Any element of this set yields an optimal solu-
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MODX SP PoP The Mode software stack
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Autonomous, optimal
routing with global reaction
times under 150ms results

feasure in a game-changing shift in

Calculate | 7 | 1 DUIMNG |roeeeremmemscnennene , the eff.ic.iency and

Control economics of private
N : networking at global scale.
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and offer it as a NaaS: MODX SD-CORE.

and others,
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We combine this overlay with private fiber from Ericsson,
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For SaaS Providers

Remote work, distance learning,
interactive streaming, and government
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MODZXZ SD-CORE provides worldwide

connectivity with 25 PoPs that span Shanghai,
San Francisco, London, Sao Paulo, and beyond.
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MODX SD-CORE for SaaS Providers High OpEx

Internet Core Insufficient
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SaaS with MODXZ SD-CORE
Great QoE, Low OpEx
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